Great Pinnacle Species Survey

October 27, 2007

Divers: Ildiko Frank, Dionna House

Visibility: 40 feet


Characterize flora and fauna in terms of species diversity and density of the Great Pinnacle (GP) and observe depth related differences, if any.

Survey protocol

We are trained to conduct ReefCheck California (RCC) surveys which follow a strict protocol in collecting data on the density of specified species on a reef. For the following reasons the marine life survey on the Great Pinnacle could not follow the RCC protocol:

1. In RCC survey depth is limited to 60 feet; average depth on GP was well below that limit.

2. In RCC a reef is surveyed on 18 transects, 30 m each,  which requires about 6 hours of dive time of a buddy pair; we had to conduct our survey in less than 2 hours.

3. In RCC the transects must be laid down on a horizontal plane with less than 10 feet variation and data is collected in a perpendicular 2 m by 2 m moving window; most life is on nearly vertical walls on GP.

4. In RCC fish, invertebrate, algae, and UPC surveys are conducted one after another swimming back and forth along a laid down transect;  some parts of this survey are very slow, e.g. UPC, counting bat stars or giant kelp stipes and would not produce information usable for the GP project.

While keeping some of the RCC recommendations we have modified the protocol to fit our target location as the following:

1. On the first dive we surveyed at 90, 70, and 50 feet, spent 15 minutes at each depth swimming at a slow steady RCC pace (3 m / minute), so at each depth we covered approximately 50 linear meters. On the second dive we omitted the 50 ft survey due to too much surge at that depth and lack of walls extending that shallow. The survey was then performed deeper at 90 feet for 15 minutes and at 70 feet for 25 minutes.

2. We did not lay down transect lines (measuring tape) because of the difficulty of securing these lines, the possible damage to marine life, and wasted time in recovering the line. Instead we tried to keep the depth, time and speed constant at each 15 minute interval.

3. Due to lack of time we surveyed fish, invertebrates, and algae together. We skipped UPC survey entirely. Instead of concentrating on the density of only the RCC species (34 fish, 28 invertebrates, 5 algae), we tried to recognize and record as many different species as possible. Time and our limited knowledge of species outside of the RCC protocol were the limiting factors.

Species list

Below is the list of species observed on GP. RCC species are listed in italics. We are convinced that the actual species list is much longer, but we would need more time, more surveyors, and more experience in order to compile a complete list. Seasonal and conditional factors have also influenced our findings. In addition to organizing the species into the main RCC categories, we also grouped them into phyla and added short paragraphs of interesting facts.


Out of 34 RCC species we observed 7 species on the GP. Fish sighting overall was a bit disappointing but divers who went deeper reported several different rockfish.

    Blue Rockfish (Sebastes mystinus)
    Divers observed a big school, about 40 together with Yellowtail about 70 feet at the South – East corner
    Yellowtail Rockfish (Sebastes flavidus)
    Divers observed a big school about 30 together with Blue Rockfish about 70 feet at the South – East corner
    Gopher Rockfish (Sebastes carnatus)
    Divers observed 8 hiding between rocks at 90 and 70 feet
    Striped Perch (Embiotoca lateralis)
    Divers observed one
    Rubberlip Perch (Rhacochilus toxotes)
    Divers observed one
    Sheephead (Semicossyphus pulcher)
    Divers observed Victor cruising at 70 feet
    Kelp Greenling (Hexagrammos decagrammus)
    Divers observed one male at 90 feet
    Painted Greenling (Oxylebius pictus)
    Divers observed three at 70 feet

Rockfish is the most common fish genus (Sebastes means magnificent) along the California coast. Heavy built, large mouth, often fat lips, average size is 1-2 feet, large dorsal fins are venomous. Some of them hide between rocks and in caves, e.g. Gopher, Copper, Black and Yellow, while others are found midwater, often among kelp blades, e.g. Blue, Black, Kelp. Some species are found mainly in deep water, e.g. Starry, Yelloweye are often several hundreds of feet deep. Some species swim in groups, e.g. Blue, Yellowtail, while others are solitary, e.g. Gopher, Vermilion. Rockfish are ovoviviparous, i.e. larvae develop in eggs inside the mothers body and the eggs are released just before hatching, several hundred thousands of them. Several species live a long life, e.g. Yelloweye and Tiger may live beyond 100 years. Rockfish diet includes crustaceans, molluscs, jellies, plankton, small fish.

Surfperch is another common group in our area (Embiotocidae means live birth). Thin compressed body, forked tail, usually less than a foot long. They are often found in schools and lead a much shorter life (6 – 10 years) than rockfish. They are viviparous, produce 10-30 live young per year and their diet consists of crustaceans, molluscs, algae.

Sheepheads belong to the Wrasse family, a relative of the Senorita. All Sheephead are born pink female and around age 4 - 7 they change to male, with modified head shape and coloration. Average size is 2-3 feet. Solitary, often in shallow water, they can live up to 50 years. Diet includes urchin, lobster, crab, barnacles, snails, opening them with its protruding canine teeth.

Kelp greenling’s name is of Greek origin and refers to its 10 lateral lines. Males and females have very different coloration, both have an elongated body. They are usually found on the rocky bottom and in dense algae at relatively shallow depth. They are solitary and territorial, live around 8 - 10 years, and have an average size of 1 foot. As in most fish, they are oviparous and the male guards the eggs laid in the nest. Their diet consists of crabs, snails, octopus and small fish.


Out of 28 RCC species we observed 12 species on GP. Observed species represent 8 phyla.

Phylum Porifera - Sponges

    Orange Puffball (Tethya aurantia)
    Red Volcano (Acarnus erithacus)
    Nipple (Polymastia pacifica)
    Finger (Toxadocia sp)
    Bread Crumb (Halichondria panicea)
    Cobalt (Hymenamphiastra cyanocripta)

Sponges are primitive invertebrates, they are asymmetrical, organized only at cell level, and have no tissues or organs (no nerves, no muscles). Cells can revert to stem cells and get reorganized into functions after a sponge is sieved. Sponges are colorful, encrusting or 3D shape, and full of pores as their phyla name indicates: pore barer. They are sessile (not moving) filter feeders and pump huge amounts of water through their body. Sponges have mutiple pores for water to go into but only have a single output pore called an osculum. They can reproduce both asexually by budding and sexually by cross fertilization between hermaphrodite individuals. Sponge structure is composed of spicules. Grouping of sponges is based on the composition and shape of spicules, some are calcium based others contain silicium or spongin fiber. Sponges feed on bacteria, detritus, and dissolved organic matter. Significant medical research is focusing on antibiotic properties of sponges.

Phylum Cnidaria – Jellies, anemonies, corals

    Large Anemonies (Utricina sp and Anthopleura sp) – about 15 at each depth
    White Plumed Anemone(Metridium farcimen) – just a few on the North – West side
    Strawberry Anemone (Corynactis californica) - abundant at 50 and 70 feet, less at 90 feet
    Orange Cup Coral (Balanophyllia elegans) – abundant at 90 and 70 feet
    Brown Sea Nettle (Chrysaora fuscesens) - abundant from the surface down to about 20 feet
    Moon Jelly (Aurelia aurita) - abundant from the surface down to about 20 feet
    California Hydrocoral (Stylaster californicus) - both purple an pink abundant at 70 and 90 feet

Cnidarians represent the next level of body complexity. They are organized at the tissue level, have a nerve net but no brain, circular and longitudinal muscles, eyes or eye spots, and all are radially symmetric. The body consists of a sac to which water gives the structure and a single opening serves both as mouth and anus. Their common characteristics are the stinging cells called a cnidocyte that fires the nematocyst, a venomous weapon used in feeding and protection. There are two life forms in this group: medusa and polyp. They often form colonies where individuals have specific roles. The flower-like class, Anthozoa, contains the anemonies, corals, and gorgonians. Jellies form the class Scyphozoa, while the hydrocoral is in a separate Hydrozoa class. Cnidarians feed on algae, worms, crab, small fish, and paralyze prey with their tentacles. Some live in symbiotic relationship with algae (e.g. coral with zooxanthellae) that produces food via photosynthesis.

Phylum Anellida  - Segmented worms

    Feather Duster (Eudistylia polymorpha) – several at all 70 feet

Segmented worms, more complex than flat worms, is the largest phyla of marine invertebrates. They have bilateral symmetry and the body is organized at the organ level. Their segmented body has a head with feeding apparatus (e.g. tentacles for filter feeding) at one end and an anus at the other. The have separated gut, closed circulatory system, and separate sexes broadcast eggs and sperm.

Phylum Mollusca – Snails, Clams, Chitons, Octopus

    Lined Chiton (Tonicella lineata) – several on crustose coralline algae at 70 feet
    Blue Top Snail (Calliostoma ligatum) – sitting on giant kelp blades and on sponges at 70 – 50 feet
    Red Turban Snail (Lithopoma gibberosa) – single one at 70 feet
    Chestnut Cowry (Cypraea spadicea) – abundant at 90 and 70 feet
    Kellet’s Whelk (Kelletia kelletii) – found only a single one at 70 feet
    Rock Scallop (Crassedoma giganteum) – several attached, and one juvenile swimming at 70 feet

This is a very large and diverse group, containing several edible creatures, for example, abalone, scallop, muscles, and squid. Our favorite nudibranchs also belong here. Molluscs have soft body, muscular foot, and many have shells produced by an organ called the mantle. The mantle cavity, a double fold of the mantle, contains the gills, anus, gonads (sex organs), and may have respiratory, feeding, brooding, and locomotory functions. Molluscs have a nervous system with a brain, an excretory system similar to human kidney, a circulatory system (open except for Cephalopods), and a respiratory system. Radula, a characteristic toothed ribbon, scrapes, cuts, and chews food before entering the digestive tract. Species are often identified based on the radula’s shape. Reproduction is always sexual and some groups, e.g. nudibranchs, are hermaphrodites. Torsion is an interesting developmental step in Gastropods (snails); part of their body is rotated 180 degrees, so the anus ends up above the head. This evolutionary advantage is not clear as secretion over the mouth and sensory organs seems counterproductive. Many species live on algae while others filter feed on plankton.

Phylum Arthropoda – Shrimp, Crab, Barnacle, Lobster

    Acorn Barnicle (Balanus sp) – several at all depths
    Decorator Crab (Oregonia gracilis) – found a single one at 70 feet
    Rock Crab (Cancer sp) – found a single one at 70 feet

Most arthropods we encounter are crustaceans. This is another group of animals consumed by humans. They are highly evolved with well developed nervous, circulatory, and excretory systems. The body is segmented into the head, thorax, and abdomen. The head bears antennae, eyes, mouth, and the thorax has appendages. As the animal grows, the stiff exoskeleton is shed. Their diet consists of plankton, other invertebrates, and small fish.

Phylum Bryozoa – Moss animals

    Southern Staghorn Bryozoan (Diaperoecia californica ) - abundant next to hydrocorals
    Fluted Bryozoan (Hippodiplosia insculpata) - several at 70 feet
    Lacy Bryozoan (Membranipora membranacea) - giant kelp blades are thickly covered by white colony

Colonial animals, individuals are called zooids that are specialized in reproduction, brooding, protection, feeding, and cleaning. They are sessile, build a calcium carbonate skeleton, and are can be confused with corals. Their characteristic feeding structure, a bunch of tentacles around the mouth, is called a lophophore, and is used in suspension feeding, collecting bacteria, plankton, and detritus. Reproduction is sexual but the colony grows by asexual budding.

Phylum Echinodermata – Sea Star, Sea Urchin, Sea Cucumber

    California Sea Cucumber ( Parastichopus californicus) – a few at 90 and 70 feet
    Warty Sea Cucumber (Parastichopus parvimensis) – a few at 90 and at 70 feet
    Purple Sea Urchin (Strongylocentrotus purpuratus) - few wedged between rocks at 70 feet
    Bat Star  (Asterina miniata) – about 30 at 90 feet, 20 at 70 feet, 10 at 50 feet
    Giant Spined Star (Pisaster giganteus) – several at all depths
    Short Spined Sea Star (Pisaster brevispinus) – a couple at 70 feet
    Leather Star (Dermastreias imbricata) – several at 70 feet
    Blood Star (Henricia leviuscula) – single one at 90 feet
    Spiny Sea Star (Poraniopsis inflata) – several at 90 feet
    Rainbow Star (Orthasterias koehleri) – several at 70 and 90 feet

The name is translated as spiny skinned and refers to the endoskeleton composed of calcium carbonate crystals. While the larvae are bilateral, the adults develop a pentaradial symmetry.  Many species have a unique water vascular system which moves the hundreds of tube feet. Most are motile and some stars, e.g. the sunflower star, move with surprising speed when on the hunt for snails and bivalves. The sea urchin’s beak like mouth is called Aristotle’s lantern. Reproduction is sexual, most species broadcast eggs and sperms, and sexes are separate. Diet is quite varied in this group with sea urchins living on kelp, sea stars eating bivalves, snails, barnacles, and chitons, and finally the sea cucumber, who are the seafloor’s vacuum cleaner eating sediment and detritus.

Phylum Chordata (Subphylum Urochordata) – Tunicate
    Lobed Tunicate (Cystodytes lobatus) – several at 70 feet

Surprisingly this animal, also called sea squirt,  is our closest relative, as we both belong to the same phylum. They are often confused with sponges, mostly sessile, and like all vertebrates they have a dorsal nerve cord starting from the brain. All vertebrate organs are present except some sensory organs like eyes.  Tunicats may be solitary, aggregate or colonial. They are filter feeders collecting plankton and dissolved organic matter and most are hermaphroditic, often brooding their eggs. Medical research discovered several antiviral and anti-cancer chemicals as well as regenerative characteristics potentially useful for humans.

Algae - Seaweed

Out of 5 RCC species we observed 2 species on GP.

The RCC list also contains Bull Kelp, Pterygophora, and Laminaria, but we did not observe these species. As we were at the end of the oceanic period, when the kelp is torn up by storms, the holdfasts were sparsely distributed and the stipe count was very low (between 2 – 10).

Phylum Phaeophyta – Brown Algae

    Southern Sea Palm (Eisenia arborea) - abundant with close to 1 m stipes at 90 and 70 feet
    Giant Kelp (Macrocystis pyrifera) - at 70 and 50 feet we found several holdfasts

Phylum Rhodophyta – Red Algae

    Articulated Coralline Algae (Corallina sp ) - several at all depths
    Crustose Coralline Algae (Lythophyllium sp )  - several at all depths
    Purple Algea (Fauchea laciniata) – several at 70 and 50 feet iridescent blue

Seaweeds are macroscopic, muticellular marine algae. They belong to three phyla: brown, red, and green algae. Kelp is the label for large seaweed in the brown algae phyla. Algae like terrestrial plants produce high energy organic compounds and oxygen via photosynthesis. In addition to chlorophyll a and c, brown algae contains the brown pigment fucoxanthin, hence the brownish color. Red algae contains red pigment phycoerythrin and the blue pigment phycocyanin, hence the red or iridescent violet color. Although kelp look similar to terrestrial vascular plants, they do not have roots, stems, or leaves. The entire body is called a thallus, the thallus terminates on the ocean floor with a holdfast, a web of tubes usually grown around a large rock. These holdfasts prevent the kelp from being swept away by currents or storms. Kelp also have leaf-like blades extending from stipes and kept afloat by pneumatocysts (gas filled floats). Kelp has a complex life cycle which includes both sexual and asexual reproduction. The giant kelp we encounter is the sporophyte, the gametophyte is the microscopic version.